Twisting lemma for $\lambda$-adic modules

نویسندگان

چکیده

A classical twisting lemma says that given a finitely generated torsion module $M$ over the Iwasawa algebra $\mathbb{Z}_p[[\Gamma ]]$ with $\Gamma \cong \mathbb{Z}_p, \exists$ continuous character $\theta: \Gamma \rightarrow \mathbb{Z}_p^\times$ such that, $ \Gamma^{n}$-Euler characteristic of twist $M(\theta)$ is finite for every $n$. This has been generalized general compact $p$-adic Lie group $G$. In this article, we consider further generalization to $\mathcal{T}[[G]]$ modules, where $G$ and $\mathcal{T}$ extension $\mathbb{Z}_p[[X]]$. Such modules naturally occur in Hida theory. We also indicate arithmetic application by considering twisted Euler Characteristic big Selmer (respectively fine Selmer) $\Lambda$-adic form extension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fitting’s Lemma for Z/2-graded Modules

Let φ : Rm → Rd be a map of free modules over a commutative ring R. Fitting’s Lemma shows that the “Fitting ideal,” the ideal of d × d minors of φ, annihilates the cokernel of φ and is a good approximation to the whole annihilator in a certain sense. In characteristic 0 we define a Fitting ideal in the more general case of a map of graded free modules over a Z/2graded skew-commutative algebra a...

متن کامل

A VAN DER CORPUT LEMMA FOR THE p-ADIC NUMBERS

We prove a version of van der Corput's Lemma for polynomials over the p-adic numbers.

متن کامل

On Adic Genus and Lambda-rings

Sufficient conditions on a space are given which guarantee that the K-theory ring is an invariant of the adic genus. An immediate consequence of this result about adic genus is that for any positive integer n, the power series ring Z[[x1, . . . , xn]] admits uncountably many pairwise non-isomorphic λ-ring structures.

متن کامل

Adic Genus , Postnikov Conjugates , and Lambda - Rings

Sufficient conditions on a space are given which guarantee that the K-theory ring and the ordinary cohomology ring with coefficients over a principal ideal domain are invariants of, respectively, the adic genus and the SNT set. An independent proof of Notbohm’s theorem on the classification of the adic genus ofBS by KO-theory λ-rings is given. An immediate consequence of these results about adi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asian Journal of Mathematics

سال: 2021

ISSN: ['1093-6106', '1945-0036']

DOI: https://doi.org/10.4310/ajm.2021.v25.n4.a5